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Abstract. A connection between the convolutive nonnegative matrix factoriza-
tion (NMF) and the conventional NMF has been established. As a result, we can
convey arbitrary alternating update rules for NMF to update rules for CNMF. In
order to illustrate the novel derivation method, a multiplicative algorithm and a
new ALS algorithm for CNMF are derived. The experiments confirm validity and
high performance of our method and of the proposed algorithm.
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1 Introduction

Expression of a nonnegative data matrix by set of basis patterns (objects) shifting along
a direction (horizontal or vertical) of a given data following the convolutive model has
recently attracted considerable interest from the view point of applications such as mu-
sic analysis, image deconvolution [1–5, 9, 11]. This decomposition model is called the
convolutive nonnegative matrix factorization (CNMF), and is considered as an exten-
sion of nonnegative matrix factorization (NMF). While there is a vast literature on al-
gorithms for NMF [2], algorithms for CNMF are still very limited in the literature. All
existing CNMF algorithms are based on the multiplicative update rules which minimize
the least-squares error [1, 6, 9] or the Kullback-Leiber divergence [1, 4], or the general-
ized alpha- or beta- divergences [2, 3]. We note that the multiplicative algorithms have
a relatively low complexity of each iteration but they are characterized by rather slow
convergence and they sometimes converge to spurious local minima [7, 8].

Blind deconvolution of a given nonnegative data Y ∈ RI×J
+ is to find P basis pat-

terns (objects) A(p) = [a(p)
1 , a

(p)
2 , . . . , a

(p)
Rp

] ∈ RI×Rp
+ , p = 1, 2, . . . , P and a location matrix

X ∈ RP×J
+ , each p-th row vector xp: representing location and intensity of A(p). For sim-

plicity, assuming that all basis patterns A(p) have the same size Rp = R,∀p, otherwise
they can be padded with zeros to the right. P basis patterns A(p) are lateral slices of a
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3-D tensor A ∈ RI×P×R, i.e., A(i, p, r) = A(p)(i, r), i = 1, . . . , I, r = 1, . . . ,R. Frontal
slices Ar = [a(1)

r a(2)
r · · · a(P)

r ] ∈ RI×P are component matrices, r = 1, 2, . . . ,R. The
mode-1 matricized version ofA is denoted by A(1) = [A1 A2 · · · AR] ∈ RI×RP

+ .
We denote a shift matrix Sr of size J × J which is a binary matrix with ones only

on the r-th superdiagonal for r > 0, or on the r-th subdiagonal for r < 0, and zeroes

elsewhere.
r→
X = XSr is an r column shifted version of X to the right, with the columns

shifted in from outside the matrix set to zero. The relation between Y, A(p) and X can
be expressed as

Y=
R∑

r=1

Ar X Sr−1 + E =
R−1∑

r=0

Ar+1

r→
X + E. (1)

Most CNMF algorithms were derived by considering (1) as R NMFs [3, 4, 6, 9]

Y = Ar+1

r→
X +

⎛⎜⎜⎜⎜⎜⎝
∑

s�r

As+1

s→
X

⎞⎟⎟⎟⎟⎟⎠ + E = Ar+1

r→
X + Er+1, r = 0, 1, . . . ,R − 1. (2)

For example, the multiplicative algorithms [3, 9] update Ar and Xr

Ar+1←Ar+1 �
(r←
Y XT

)
�

⎛⎜⎜⎜⎜⎝
r←
Ŷ XT

⎞⎟⎟⎟⎟⎠ , r = 0, 1, . . . ,R − 1, (3)

Xr+1←X �
(
AT

r+1

r←
Y

)
�

⎛⎜⎜⎜⎜⎝AT
r+1

r←
Ŷ

⎞⎟⎟⎟⎟⎠ , (4)

where symbols “�” and “�” denote the Hadamard element-wise product and division.
The coding matrix X is averaged over R estimations Xr in (4), i.e., X = 1

R

∑R
r=1 Xr.

Although the approach is simple and quite direct, its average update rule for X is not

optimal. The reason is that the factorization (2) does not consider other shifts
s→
X (s � r)

existing in Er+1. Moreover, practical simulations show that the average rules are not
stable and converge slowly.

In the sequel, we present a connection between CNMF and NMF. Based on this,
an arbitrary alternating update rule for NMF can be conveyed to CNMF. In order to
illustrate the novel derivation method, a multiplicative algorithm and a robust ALS al-
gorithm for CNMF are proposed.

2 A Novel Derivation for CNMF Algorithms

In general, update rules for A and X can be derived by minimizing a cost function
which can be the Frobenius norm of the approximation error

D(Y‖Ŷ) =
1
2
‖Y − Ŷ‖2F =

1
2
‖Y −

R∑

r=1

Ar X Sr−1‖2F . (5)

From (1), the approximation of Y can be expressed as an NMF with rank PR, that is,

Y =
[
A1 A2 · · · AR

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
1→
X
...

(R−1)→
X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ E = A(1) Z + E , (6)
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or as an approximation of vec(Y)

vec(Y) = vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑

r=0

Ar+1 X Sr + E

⎞⎟⎟⎟⎟⎟⎟⎠ = F vec(X) + vec(E) , (7)

where F =
∑R−1

r=0

(
ST

r ⊗ Ar+1

)
∈ RIJ×PJ

+ , ‘⊗’ denotes the Kronecker product. From (5),
(6) and (7), we can alternatively updateA or X while fixing the other according to the
following procedure

X = arg min
X
‖ vec(Y) − F vec(X) ‖22, subject to X ≥ 0 with fixedA, (8)

A = arg min
A(1)

‖Y − A(1)Z‖2F , subject toA ≥ 0 with fixed X. (9)

Note that we can employ any update rules for NMF to updateA and X. For example,
by employing the multiplicative update rules [7] we can updateA

A(1) ← A(1) �
(
Y ZT

)
�

(
ŶZT

)
= A(1) �

[
Y ST

r XT
]R−1

r=0
�

[
Ŷ ST

r XT
]R−1

r=0
, (10)

which can be rewritten for component matrices Ar, r = 1, 2, . . . ,R

Ar ← Ar �
(
Y ST

r−1 XT
)
�

(
Ŷ ST

r−1 XT
)
, r = 1, 2, . . . ,R. (11)

The multiplicative Least-Squares update rule for X is given by

vec(X)← vec(X) �
(
FT vec(Y)

)
�

(
FT vec

(
Ŷ
))

= vec(X) � vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑

r=0

AT
r+1Y ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ � vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑

r=0

AT
r+1Ŷ ST

r

⎞⎟⎟⎟⎟⎟⎟⎠

or in the matrix form

X← X �

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑

r=0

AT
r+1Y ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎝

R−1∑

r=0

AT
r+1Ŷ ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ . (12)

The update rules in (11) and (12) are particular cases of the multiplicative algorithm
for CNMF2D [1]. However, its derivation is much simpler than that in [1]. Similarly,
it is straightforward to derive update rules for the multiplicative Kullback-Leiber algo-
rithms, the ALS algorithms. In addition, (6) and (7) also lead to condition on the number
of patterns and the number of components PR ≤ min(I, J).

3 Alternative Least Squares Algorithm for CNMF

The alternative least squares (ALS) algorithm and its variations are commonly used for
nonnegative matrix factorizations (see Chapter 4 [2]). For CNMF, it is straightforward
to derive from (8) and (9) two ALS update rules given by

A(1) ←
[
Y ZT

(
ZZT

)−1
]
+
, vec(X)←

[
Q−1 b

]
+
, (13)
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where [x]+ = max(x, ε) is the element-wise rectifier which converts negative input to
zero or a small enough value, and

Q = FT F =
R−1∑

r=0

R−1∑

s=0

(
Sr ST

s ⊗ AT
r+1As+1

)
∈ RL×L

+ , L = JP, (14)

b = FT vec(Y) = vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑

r=0

AT
r+1Y ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ RL. (15)

Although the ALS algorithm (13) is simple, it is not stable for sparse nonnegative data
as illustrated in Section 5 for decomposition of spectrogram of sound sequences. In the
sequel, a robust ALS algorithm is proposed for CNMF. From (5), (8), we consider the
least-squares cost function which leads to a nonnegative quadratic programming (NQP)
problem

D =
1
2
‖ vec(Y) − F vec(X) ‖22 =

1
2
‖Y‖2F +

1
2

xT Qx − bT x, (16)

where x = vec(X).
We denote x̃ = [x̃1 x̃2 · · · x̃L]T = Q−1 b the solution of the gradient∇D(x) = Q x− b,

and I+ ⊂ {1, 2, . . . , L} a set of L1 ≤ L nonnegative entries, i.e. x̃I+ ≥ 0. If L1 = L,
then x̃ is solution of (8) as in (13). Otherwise, the (L − L1) negative entries xI− , I− =
{1, 2, . . . , L}\I+ are set to zeros by the rectifier according to (13). Hence, from (16), the
rest L1 variables xI+ are solutions of a reduced problem of a lower order L1, that is

D =
1
2
‖Y‖2F +

1
2

xT
I+ QI+ xI+ − bT

I+ xI+ , (17)

where QI+ and bI+ are parts of Q and b whose row and column indices are specified
by I+, respectively. If x̃I+ = Q−1

I+ bI+ has L2 < L1 nonnegative entries, we solve the
subproblem of (17) of the lower order L2. The procedure is recursively applied until
there is not any negative entry x̃, i.e. I− = ∅ (see the subfunction nqp in Algorithm 1).

Similarly, the cost function (9) can also be expressed as an NQP problem to update
A(1) or horizontal slices Ai:: defined as Ai::(p, r) =A(i, p, r), i = 1, 2, . . . , I

D =
1
2
‖Y‖2F +

1
2

vec
(
AT

(1)

)T (
II ⊗

(
ZZT

))
vec

(
AT

(1)

)
− vec

(
ZYT

)T
vec

(
AT

(1)

)
(18)

=
1
2
‖Y‖2F +

I∑

i=1

(
1
2

vec(Ai::)T
(
ZZT

)
vec(Ai::) −

(
yi: ZT

)
vec(Ai::)

)
, (19)

where yi: denotes the i-th row vector of Y. Finally, pseudo code of the (Q)ALS algorithm
is described in Algorithm 1.

4 Initialization for CNMF Algorithms

In general, patterns A(p) and coding matrix X can be initialized by nonnegative random
values over multiple runs. The final solution can be chosen among them. Practical exper-
iments show that although this simple method can produce acceptable solution, it needs
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Algorithm 1. QALS Algorithm
Input: Y: nonnegative matrix I × J

P,R: number of patterns and components
Output: A(p) ∈ RI×R

+ , p = 1, 2, . . . , P and X ∈ RR×J
+

begin
InitializeA and X
repeat

vec(X) = nqp (Q, b) // Q in (14), b in (15)

for i = 1 to I do vec(Ai::) = nqp
(
ZZT ,Z yT

i:

)
; // Update A

until a stopping criterion is met
end

function x = nqp (Q, b) // Q ∈ RL×L
+ , b ∈ RL

begin
I+ = {1, 2, . . . , L}
repeat

x̃I+ = Q−1
I+ bI+ ; I− = {l ∈ I+ : x̃l < 0}; I+ = I+\I−;

until I− = ∅
x = max{0, x̃}

end

a large number of iterations and several (many) runs from different initial conditions
to minimize probability of being stucked in false local minima instead of the global
minimum. Noting that from the connection (6), A(1) in approximation ‖Y − A(1)Z‖F
without nonnegativity constraints must comprise PR leading left singular components
of Y. Therefore, an SVD-based initialization method is proposed for A(p) by taking in
account that these leading singular components should be distributed among patterns
A(p). That is the first component matrix A1 takes R leading left singular components,
the next R leading left components are for A2, and so on. Similarly, X can be initialized
by P leading right singular vectors of Y. Moreover, due to nonnegativity constraints,
absolute values of singular vectors are used.

5 Simulations

In this section, we compare CNMF algorithms including QALS, the average multiplica-
tive algorithm (aMLS) in (4) [9], the simultaneous multiplicative algorithm (MLS) in
(12) [1] through decomposition of two music sequences into basic notes. For the first
sequence, the sampled song “London Bridge” composed of five notes D4, E4, F4, G4
and A4 was played on a piano for 4.5 seconds illustrated in Fig. 1(a) (see Chapter 3 [2]).
The signal was sampled at 8 kHz and filtered by using a bandpass filter with a band-
width of 240 − 480 Hz. The magnitude spectrogram Y of size 257 frequency bins ×
141 time frames is shown in Fig. 1(a), in which each rising part corresponds to the note
actually played. It means Y is very sparse.

The second sequence was recorded from the same song but composed of five notes
A3, G3, F3, E3 and D3 played on a guitar for 5 seconds (see Chapter 3 [2]). The log-
frequency spectrogram Y (364 × 151) illustrated in Fig. 1(b) was converted from the
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linear-frequency spectrogram with a quality factor Q = 100 and in the frequency range
from f0 = 109.4 Hz (bin 8) to fI = fs/2 = 4000 Hz (bin 257) [10]. The lowest approxi-
mation error for this spectrum is 27.56 dB when there was no decomposition.
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Fig. 1. Waveforms and spectrograms of the two sequences “London Bridge”

(a) Sequence 1 (b) Sequence 2

Fig. 2. Convergence behavior of CNMF algorithms as function of the number of iterations for
decomposition of two music sequences. Min-max bounds to the relative errors are shown shaded
for random initialization.

Table 1. Performance comparison for various CNMF algorithms

Algo-
rithm

Sequence 1 Sequence 2
SNR (dB) RTime (secs)- SNR (dB) RTime (secs) -

Random SVD-based SNR (dB) Random SVD-based SNR (dB)
aMLS 15.00 ± 1.98 15.49 11.52 ± 0.54 11.81
MLS 19.75 ± 4.99 25.08 6.54 - 25.08 19.30 ± 2.18 19.42 13.10 - 19.42
QALS 24.22± 3.23 25.74 1.37 - 25.14 20.25 ± 0.90 20.38 3.22 - 20.33
ALS 18.12 15.07
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Fig. 3. Coding matrices X estimated by aMLS (left) and QALS (right) using SVD-based initial-
ization, and matched with the piano roll for the sequence 1
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(a) Basis and reconstructed sequences by aMLS, SNR =
15.49 dB.
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(b) Basis and reconstructed sequences by QALS, SNR =
25.74 dB.

Fig. 4. Waveforms of basis spectral patterns A(p) and the corresponding coding vectors xp: esti-
mated by aMLS and QALS. The reconstructed sequences (in the bottom) are summation of basis
sequences.

For both sequences, CNMF algorithms were applied to extract 5 patterns A(p) ∈
R

I×10
+ , and to explain the observed sequence through basis audio sequences. The ap-

proximate signals were reconstructed from basis patterns, and normalized to have the
same energy as the original signal. Algorithms were initialized by the nonnegative ran-
dom values over 100 times or by absolute values of leading singular vectors extracted

from Y. The relative approximation errors 20 log10

⎛⎜⎜⎜⎜⎝
‖Y − Ŷ‖F
‖Y‖F

⎞⎟⎟⎟⎟⎠ (dB) with different ini-

tializations are illustrated as function of the number of iterations in Fig. 2. Moreover,
Table 1 provides the signal-to-noise (SNR) ratio between the original audio sequence

and its approximate signal −20 log

( ‖y − ŷ‖2
‖y‖2

)
(dB). Running time (seconds) and SNR

as the algorithm converged are given in columns 3 and 5 in Table 1, respectively.
As seen in Fig. 2, aMLS (orange shading) is not stable for both sequences, and often

gets stuck in local minima by random initialization. Although SVD-based initialization
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can improve its performance (brown dash-dot lines), the cost values of aMLS did not al-
ways decrease. This was caused by the average rule (4) which is not optimal here. MLS
which simultaneously updates X has better convergence (green shading) than aMLS.
Among algorithms with random initialization, QALS mostly achieved the lowest ap-
proximation error (magenta shading and magenta dash lines). Moreover, QALS reached
the converged values ealier, after 100 iterations, than MLS and aMLS.

Fig. 2 also indicates that SVD-based initialization improved performance compared
with random initialization. QALS (dash-dot red lines) converged after 20 iterations in
1.37 seconds and in 3.22 seconds for two sequences, respectively. Whereas MLS (dash-
dot green lines) run at least 1000 iterations to achieve similar approximation errors in
6.54 seconds and 13.10 seconds respectively. Running time was measured on a comput-
ing server which has 2 quadcore 3.33 GHz processors and 64 GB memory. Therefore,
although complexity per iteration of QALS is higher than that of MLS, QALS may
converge earlier than MLS due to significantly less computation iterations.

Fig. 3 illustrates two coding matrices X estimated by QALS and aMLS for the se-
quence 1 after matching with its piano roll. The coding map X by QALS is more similar
to the piano roll than that of aMLS. The patterns appear continually as the notes played
in the piano roll. In addition, waveforms constructed from the basis spectral patterns
A(p) and the corresponding coding row vectors xp:, p = 1, . . . , 5, are illustrated in Fig. 4
for aMLS and QALS. aMLS achieved a reconstruction error of 15.49 dB. Whereas
QALS obtained much higher performance with an approximation error of 25.74 dB.
The standard ALS achieved an error of 18.20 dB. More comparisons between the algo-
rithms are given in Table 1, which confirms the superior performance of QALS.

6 Conclusions

A connection between CNMF and NMFs is presented and allows us to straightforwardly
extend arbitrary alternating NMF update rules to CNMF. The novel derivation method
has been illustrated by two simple CNMF algorithms. In addition, a novel (Q)ALS
algorithm is proposed and has been confirmed to give higher performance than those
of the multiplicative algorithms in the sense of convergence, and reconstruction error.
Moreover, based on the new connection, an SVD-based initialization method has been
proposed for CNMF algorithms.
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